

Custodia Security

BAOs.fun Review
Conducted By: Ali Kalout, Ali Shehab

Contents

1. Disclaimer​ 3
2. Introduction​ 3
3. About Sting​ 3
4. Risk Classification​ 4

4.1. Impact​ 4
4.2. Likelihood​ 4
4.3. Action required for severity levels​ 5

5. Security Assessment Summary​ 5
6. Executive Summary​ 5
7. Findings​ 7

7.1. High Findings​ 7
[H-01] BAO owner should not be able to change the protocol admin in BAOs and
EquityNFTs, the protocol admin wouldn't receive NFT royalties​ 7
[H-02] Royalties can be drained by continously calling EquityNFT::claimRoyalties​ 8
[H-03] refund reverts if the contributor has an OTC contirbution, as it doesn't handle
address(1) token​ 9
[H-04] totalRaised and contributions[user].amount become stale and inaccurate over
time​ 11

7.2. Medium Findings​ 12
[M-01] EquityNFT doesn't support royalties in ERC20 tokens​ 12
[M-02] Sending ETH to the sender may fail if the caller is a contract, because of the
.transfer usage​ 13
[M-03] Funds would be stuck if the BAO owner decided not to call finalizeFundraising​ 14
[M-04] recordOtcContribution lacks max contribution validation​ 15
[M-05] Users can’t claim their contribution NFT if they refunded earlier​ 17
[M-06] refund is not decreasing the totalRaised amount, leading to wrong contribution
proportions​ 19

7.3. Low Findings​ 21
[L-01] tokenURI shows the BERA contribution as a whole number in _formatEther​ 21
[L-02] Deprecated use of Pyth.getPrice​ 21
[L-03] There's no way to refund an OTC contribution​ 22

1. Disclaimer

A smart contract security review cannot ensure the absolute absence of
vulnerabilities. This process is limited by time, resources, and expertise and
aims to identify as many vulnerabilities as possible. We cannot guarantee
complete security after the review, nor can we assure that the review will
detect every issue in your smart contracts. We strongly recommend
follow-up security reviews, bug bounty programs, and on-chain monitoring.

2. Introduction

Custodia conducted a security assessment of BAOs.fun’s smart contract
ensuring its proper implementation.

3. About BAOs.fun

The BAOs.fun platform enables DAO and project fundraising with
multi-token contribution support, precise equity tracking, and robust fund
management capabilities. The platform is built on Solidity with Foundry
testing framework and integrates Pyth Network for accurate price feeds.

4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1. Impact

●​ High: Results in a substantial loss of assets within the protocol or
significantly impacts a group of users.

●​ Medium: Causes a minor loss of funds (such as value leakage) or
affects a core functionality of the protocol.

●​ Low: Leads to any unexpected behavior in some of the protocol's
functionalities, but is not critical.

4.2. Likelihood

●​ High: The attack path is feasible with reasonable assumptions that
replicate on-chain conditions, and the cost of the attack is relatively
low compared to the potential funds that can be stolen or lost.

●​ Medium: The attack vector is conditionally incentivized but still
relatively likely.

●​ Low: The attack requires too many or highly unlikely assumptions, or
it demands a significant stake by the attacker with little or no
incentive.

4.3. Action required for severity levels

●​ Critical: Must fix as soon as possible
●​ High: Must fix
●​ Medium: Should fix
●​ Low: Could fix

5. Security Assessment Summary

Duration: 16/04/2025 - 22/04/2025
Repository: beradigm/bao-contracts
Commit: 84c0bce580e6531f154aea0728c555fcc4be6d43

●​ src/*

6. Executive Summary

Throughout the security review, Ali Kalout and Ali Shehab engaged with
BAOs.fun’s team to review BAOs.fun. During this review, 13 issues were
uncovered.

Findings Count

Severity Amount

Critical N/A

High 4

Medium 6

Low 3

Total Finding 13

Summary of Findings

ID Title Severity Status

H-01 BAO owner should not be able to change the protocol
admin in BAOs and EquityNFTs, the protocol admin
wouldn't receive NFT royalties

High Resolved

H-02 Royalties can be drained by continously calling
EquityNFT::claimRoyalties

High Resolved

H-03 refund reverts if the contributor has an OTC
contirbution, as it doesn't handle address(1) token

High Resolved

H-04 totalRaised and
contributions[user].amount become stale and
inaccurate over time

High Resolved

M-01 EquityNFT doesn't support royalties in ERC20 tokens Medium Resolved

M-02 Sending ETH to the sender may fail if the caller is a
contract, because of the .transfer usage

Medium Resolved

M-03 Funds would be stuck if the BAO owner decided not
to call finalizeFundraising

Medium Resolved

M-04 recordOtcContribution lacks max contribution
validation

Medium Disputed

M-05 Users can’t claim their contribution NFT if they
refunded earlier

Medium Resolved

M-06 refund is not decreasing the totalRaised amount,
leading to wrong contribution proportions

Medium Resolved

L-01 tokenURI shows the BERA contribution as a whole
number in _formatEther

Low Resolved

L-02 Deprecated use of Pyth.getPrice Low Resolved

L-03 There's no way to refund an OTC contribution Low Resolved

7. Findings

7.1. High Findings

[H-01] BAO owner should not be able to change the protocol
admin in BAOs and EquityNFTs, the protocol admin wouldn't
receive NFT royalties

Severity:
High

Description:
Both the BAO owner and the protocol admin are expected to receive NFT royalty.
However, the BAO owners could block the protocol admin from receieving those
royalties by setting it as a differeent address.

This could be done in a couple of places:
1. BaosFactory::deployDao allows the deployer to override the BAO's protocol
admin upon deployment:
// If protocolAdmin is not set in config, use the factory's protocolAdmin

if (updatedConfig.protocolAdmin == address(0)) {

 updatedConfig.protocolAdmin = protocolAdmin;

}

2. EquityNFT::setProtocolAdmin allows the BAO owner to override the protocol
admin in the Equity NFT address:
/**

 * @dev Set new protocol admin

 * @param newProtocolAdmin New protocol admin address

 */

function setProtocolAdmin(address newProtocolAdmin) external onlyOwner {

 require(newProtocolAdmin != address(0), "Invalid protocol admin");

 protocolAdmin = newProtocolAdmin;

}

Recommendations:
Remove these code snippents, to block the BAO owner from overriding the protocol
admin.

[H-02] Royalties can be drained by continously calling
EquityNFT::claimRoyalties

Severity:
High

Description:
Both the BAO owner and the protocol admin are expected to receive NFT royalty. They
could be claimed by calling `EquityNFT::claimRoyalties` by either tha BAO owner or the
protocol admin, it calculates the caller's cut, and send it. However, it doesn't either send
the roylaties to the other side, nor saves the claim. This allows either the BAO owner or
the protocol admin to drain all royalties and steal other party's royalties.

Proof of Concept:
function test_DrainAllRoyalties() public {

 uint256 payment = 0.5 ether;

 vm.deal(marketplaceUser, payment);

 vm.prank(marketplaceUser);

 (bool sent1,) = address(nft).call{value: payment}("");

 assertTrue(sent1);

 uint256 protocolAdminBalanceBefore = address(protocolAdmin).balance;

 for (uint256 i = 0; i < 100; i++) {

 vm.prank(protocolAdmin);

 nft.claimRoyalties();

 }

 assertEq(

 address(protocolAdmin).balance - protocolAdminBalanceBefore,

 payment - 1

);

 uint256 daoManagerBalanceBefore = address(daoManager).balance;

 vm.prank(daoManager);

 nft.claimRoyalties();

 assertEq(address(daoManager).balance - daoManagerBalanceBefore, 0);

}

Recommendations:
Send both royalties on every claim call.

[H-03] refund reverts if the contributor has an OTC
contirbution, as it doesn't handle address(1) token

Severity:
High

Description:
The recordOtcContribution() function marks OTC (off-chain or manual)
contributions using address(1) in the TokenContribution struct:
TokenContribution({

 token: address(1),

 amount: 0,

 usdValue: ...

});

However, the refund() function does not handle address(1) explicitly, and treats it
as a normal ERC20 token. When it reaches:
IERC20(contrib.token).safeTransfer(msg.sender, contrib.amount);
…it attempts to call transfer() on IERC20(address(1)), which is not a real
contract and causes the transaction to revert.

This completely blocks refunds for any contributor who has at least one OTC
contribution, even if they also contributed via ETH or ERC20.

Proof of Concept:
function test_noRefundIfUserGetOtcContribution() public {

 vm.prank(daoManager);

 bao.addSupportedToken(ibgtToken, ibgtUsdPriceId);

 // First add users to the whitelist

 address[] memory addresses = new address[](2);

 addresses[0] = user1;

 addresses[1] = user2;

 vm.prank(daoManager);

 bao.addToWhitelist(addresses);

 // Deal tokens to users for testing if not done already in setUp

 deal(ibgtToken, user1, 100 * 10 ** 18);

 // User1 approves and contributes 100 iBGT

 vm.startPrank(user1);

 IERC20(ibgtToken).approve(address(bao), 100 * 10 ** 18);

 // Empty update data since we're using the price from setup

 bytes[] memory updateData = new bytes[](0);

 bao.contributeWithToken(ibgtToken, 100 * 10 ** 18, updateData);

 vm.stopPrank();

 // Record an OTC contribution for user3 worth $800

 vm.prank(daoManager);

 bao.recordOtcContribution(user1, 100 * 10 ** 18, "");

 vm.warp(block.timestamp + 31 days);

 vm.prank(user1);

 vm.expectRevert();

 bao.refund();

}

Recommendations:
Explicitly handle address(1) (OTC marker) in the refund() loop:
for (uint256 i = 0; i < tokenContribs.length; i++) {

 TokenContribution storage contrib = tokenContribs[i];

 if (contrib.token == address(1)) {

 // OTC contribution, no refund needed

 continue;

 }

 if (contrib.token == address(0)) {

 payable(msg.sender).transfer(contrib.amount);

 emit Refund(msg.sender, address(0), contrib.amount);

 } else {

 IERC20(contrib.token).safeTransfer(msg.sender, contrib.amount);

 emit Refund(msg.sender, contrib.token, contrib.amount);

 }

}

[H-04] totalRaised and contributions[user].amount
become stale and inaccurate over time

Severity:
High

Description:
The BAO contract tracks totalRaised and each user's
contributions[user].amount in USD (18 decimals). However, these values are
only updated during the moment of contribution using a snapshot of token prices. This
leads to inconsistencies due to:

1.​ Token price changes: USD values become outdated when the token price

changes after contribution.
2.​ Token removals: If a token is removed via removeSupportedToken, its

contributions are still counted in totalRaised.
3.​ Refunds: Refunded contributions do not decrement `totalRaised`, inflating the

fundraising progress.
4.​ Manual setGoalReached: The owner can mark goal as reached with incorrect

totalRaised, allowing finalizeFundraising() with inflated numbers.

This causes multiple downstream issues:

-​ Misleading goalReached status.
-​ Incorrect share distribution in finalizeFundraising.
-​ Wrong contribution proportions shown in the NFTs (claimNFT() uses stale

USD).
-​ Inability to determine accurate eligibility for refunds or further contributions.

Recommendations:
Implement a dynamic, on-demand recalculation model:

-​ Replace fixed contributions[user].amount with token-level records
(TokenContribution[]) only, we can still have a static record for OTC
contributions.

-​ Calculate totalRaised and each user's USD value on-the-fly using current
Pyth prices.

-​ Introduce a permissionless function to recalculate totalRaised based on latest
prices.

-​ Add a similar helper: getCurrentUsdContribution(address user) to
compute real-time value of each user’s contributions.

-​ Replace usages of contributions[user].amount with this dynamic
calculation where accuracy is important (e.g. gating logic, refunds, NFT
proportions).

Once fundraising is finalized via finalizeFundraising(), it’s safe to cache the
current USD values permanently:

-​ Capture each user's final USD value and the total at that moment.
-​ These values can then be stored and used for NFT minting, token URI rendering,

share distribution, etc.

-​ This avoids recalculation post-finalization and reduces gas costs for
claimNFT() calls.

This hybrid model ensures precision during fundraising, and performance afterward.

7.2. Medium Findings

[M-01] EquityNFT doesn't support royalties in ERC20 tokens

Severity:
Medium

Description:
The EquityNFT contract currently supports receiving and claiming royalties only in the
native token (e.g., ETH or BERA), via:

1.​ receive() function to accumulate royalties
2.​ claimRoyalties() to allow the daoManager and protocolAdmin to withdraw

their share

However, many modern NFT marketplaces support ERC20 tokens (e.g., USDC, DAI) as
payment options. In such cases, royalty payments in ERC20s will not be detected,
tracked, or claimable through the current contract.

This breaks the expectation of full royalty support and could result in lost or inaccessible
royalty revenue.

Recommendations:
Support royalties in ERC20 tokens.

[M-02] Sending ETH to the sender may fail if the caller is a
contract, because of the .transfer usage

Severity:
Medium

Description:
This can revert if msg.sender is a contract, because .transfer only forwards 2300
gas, which is not enough for contracts with non-trivial fallback logic or no receive()
function.

This can block participation, leading to loss of funds or broken integrations

Recommendations:
Replace .transfer() with .call{value: refund}("") for safe and gas-flexible
transfers:

(bool sent,) = payable(msg.sender).call{value: refund}("");

require(sent, "ETH refund failed");

[M-03] Funds would be stuck if the BAO owner decided not to
call finalizeFundraising

Severity:
Medium

Description:
If the fundraising goal is reached but the DAO owner (contract owner) decides not to
call finalizeFundraising(), then all contributed funds—whether ETH or
ERC20—become permanently stuck in the contract:

-​ Contributors cannot call refund(), because the goal was reached.
-​ finalizeFundraising() is restricted to onlyOwner, so only the DAO

manager can initiate equity NFT minting and unlock fund withdrawal.
-​ emergencyEscape() is restricted to protocolAdmin, but it only transfers

tokens from supportedTokensList. The owner can front-run the
`protocolAdmin` and remove supported tokens using
removeSupportedToken() before emergencyEscape() is called.

This creates a centralized griefing vector, where the DAO owner can block
contributors from getting shares and block the protocol from recovering the funds.

Proof of Concept:
function test_neverFinalizingBug() public {

 vm.prank(daoManager);

 bao.addSupportedToken(ibgtToken, ibgtUsdPriceId);

 // First add users to the whitelist

 address[] memory addresses = new address[](2);

 addresses[0] = user1;

 addresses[1] = user2;

 vm.prank(daoManager);

 bao.addToWhitelist(addresses);

 // Deal tokens to users for testing if not done already in setUp

 deal(ibgtToken, user1, 15000 * 10 ** 18);

 deal(ibgtToken, user2, 15000 * 10 ** 18);

 // User1 approves and contributes 20 iBGT (worth $140 at $7 per iBGT)

 vm.startPrank(user1);

 IERC20(ibgtToken).approve(address(bao), 15000 * 10 ** 18);

 // Empty update data since we're using the price from setup

 bytes[] memory updateData = new bytes[](0);

 bao.contributeWithToken(ibgtToken, 15000 * 10 ** 18, updateData);

 vm.stopPrank();

 // User2 also contributes with iBGT

 vm.startPrank(user2);

 IERC20(ibgtToken).approve(address(bao), 15000 * 10 ** 18);

 bao.contributeWithToken(ibgtToken, 15000 * 10 ** 18, updateData);

 vm.stopPrank();

 //dao manager dont want to finalize

 //so the protocolAdmin decided to do emergencyEscape to save the money

 //but the owner so that and decided to front-run and remove the supported token

 //so that it will not be possible

 vm.prank(daoManager);

 bao.removeSupportedToken(ibgtToken);

 //now emergency escape won't work

 uint256 amountBefore = IERC20(ibgtToken).balanceOf(address(bao));

 vm.prank(protocolAdmin);

 bao.emergencyEscape();

 uint256 amountAfter = IERC20(ibgtToken).balanceOf(address(bao));

 assertEq(amountBefore, amountAfter);

}

Recommendations:
Allow the protocolAdmin to finalize fundraising if the goal is reached and the deadline
passed.

[M-04] recordOtcContribution lacks max contribution
validation

Severity:
Medium

Description:
The recordOtcContribution() function is used to manually record off-chain (OTC)
contributions, such as a user sending an NFT or an asset outside the protocol.
However, the function does not validate against contribution limits, such as
maxWhitelistAmount.

This allows users to bypass whitelist contribution caps by:

1.​ Contributing up to their `maxWhitelistAmount` using contribute() or
contributeWithToken()

2.​ Then sending an NFT or asset off-chain and having the DAO manager record an
OTC contribution

3.​ The resulting total contribution exceeds the cap without reversion

This is especially dangerous in private or allowlist rounds, where the DAO wants to
enforce strict per-user limits.

This allows users to bypass per-user contribution limits during private rounds.

Proof of Concept:
function test_bypassMaxWhitelistAmount() public {

 vm.prank(daoManager);

 bao.addSupportedToken(ibgtToken, ibgtUsdPriceId);

 // First add users to the whitelist

 address[] memory addresses = new address[](2);

 addresses[0] = user1;

 addresses[1] = user2;

 vm.prank(daoManager);

 bao.addToWhitelist(addresses);

 //maxWhitlist 1000$

 // Deal tokens to users for testing if not done already in setUp

 deal(ibgtToken, user1, 600 * 10 ** 18);

 // User1 approves and contributes 100 iBGT

 vm.startPrank(user1);

 IERC20(ibgtToken).approve(address(bao), 100 * 10 ** 18);

 // Empty update data since we're using the price from setup

 bytes[] memory updateData = new bytes[](0);

 bao.contributeWithToken(ibgtToken, 100 * 10 ** 18, updateData);

 vm.stopPrank();

 // Record an OTC contribution for user3 worth $800

 vm.prank(daoManager);

 bao.recordOtcContribution(user1, 800 * 10 ** 18, "");

 (uint256 user1Amount,) = bao.contributions(user1);

 uint256 maxWhitelistAmount = bao.maxWhitelistAmount();

 assertGt(user1Amount, maxWhitelistAmount);

}

Recommendations:
Add validation logic inside recordOtcContribution():

if (maxWhitelistAmount > 0) {

 require(whitelist[contributor], "Not whitelisted");

 require(

 contributions[contributor].amount + usdValue <= maxWhitelistAmount,

 "Exceeds max whitelist amount"

);

} else if (maxPublicContributionAmount > 0) {

 require(

 contributions[contributor].amount + usdValue <= maxPublicContributionAmount,

 "Exceeds max public contribution amount"

);

}

This mirrors the checks already present in contribute() and
contributeWithToken().

[M-05] Users can’t claim their contribution NFT if they
refunded earlier

Severity:

Medium

Description:
When a contributor calls refund(), the contract sets:
claimed[msg.sender] = true;

Later, if:

1.​ The fundraising deadline is extended,
2.​ The contributor contributes again,
3.​ And the fundraising is finalized…

…the same user cannot claim their NFT, because claimNFT() includes the check:
require(!claimed[msg.sender], "Already claimed");

This logic incorrectly assumes that a "claim" or "refund" is terminal, even though the
contributor may re-enter via a new contribution after a deadline extension.

Leading to contributors who refunded but later rejoined **cannot claim their NFT**.

Proof of Concept:
function test_CantClaimAfterRefund() public {

 address[] memory addresses = new address[](3);

 addresses[0] = user1;

 addresses[1] = user2;

 addresses[2] = user3;

 vm.prank(daoManager);

 bao.addToWhitelist(addresses);

 vm.deal(user1, 200 ether);

 vm.deal(user2, 200 ether);

 vm.deal(user3, 200 ether);

 vm.prank(user1);

 bao.contribute{value: 200 ether}();

 vm.prank(user2);

 bao.contribute{value: 200 ether}();

 vm.prank(user3);

 bao.contribute{value: 200 ether}();

 vm.warp(block.timestamp + 31 days);

 vm.mockCall(

 address(mockPyth),

 abi.encodeWithSelector(mockPyth.getPrice.selector, beraUsdPriceId),

 abi.encode(

 PythStructs.Price({

 price: BERA_USD_PRICE,

 conf: uint64(10000),

 expo: EXPO,

 publishTime: uint(block.timestamp)

 })

)

);

 vm.prank(user3);

 bao.refund();

 vm.prank(daoManager);

 bao.extendFundraisingDeadline(block.timestamp + 30 days);

 vm.prank(user3);

 bao.contribute{value: 200 ether}();

 vm.warp(block.timestamp + 31 days);

 vm.startPrank(daoManager);

 bao.setGoalReached();

 bao.finalizeFundraising(

 "myNFT",

 "MFT",

 "https://api.bao.fun/nft/metadata/"

);

 vm.stopPrank();

 vm.prank(user1);

 bao.claimNFT();

 vm.prank(user2);

 bao.claimNFT();

 vm.prank(user3);

 vm.expectRevert(bytes("Already claimed"));

 bao.claimNFT();

}

Recommendations:
In refund(), remove the claimed[msg.sender] = true; flag entirely. Instead:

delete tokenContributions[msg.sender];

This safely resets the contributor state and allows them to re-enter.

[M-06] refund is not decreasing the totalRaised amount,
leading to wrong contribution proportions

Severity:
Medium

Description:
The BAO contract tracks totalRaised to calculate proportional share distribution
during finalizeFundraising(). However, when a user calls refund() (after the
fundraising deadline and without goal being reached), their refunded amount is not
deducted from totalRaised.

This leads to a mismatch: when the DAO owner later calls setGoalReached() and
finalizeFundraising(), the proportions are calculated using the outdated
`totalRaised` value, which includes refunded funds that no longer exist in the contract.

This results in inflated denominators in the share calculation and incorrect equity
allocations.

Proof of Concept:
function test_settingGoalReachedManuallyAfterDeadline_wrongProportions()

 public

{

 address[] memory addresses = new address[](3);

 addresses[0] = user1;

 addresses[1] = user2;

 vm.prank(daoManager);

 bao.addToWhitelist(addresses);

 vm.deal(user1, 200 ether);

 vm.prank(user1);

 bao.contribute{value: 200 ether}();

 vm.deal(user2, 200 ether);

 vm.prank(user2);

 bao.contribute{value: 200 ether}();

 vm.warp(block.timestamp + 31 days);

 vm.prank(user1);

 bao.refund();

 vm.prank(daoManager);

 bao.setGoalReached();

 vm.prank(daoManager);

 bao.finalizeFundraising(

 "myNFT",

 "MFT",

 "https://api.bao.fun/nft/metadata/"

);

 vm.prank(user2);

 bao.claimNFT();

 // proportions should is 50%

 assertEq(

 EquityNFT(payable(bao.contributorNFT())).tokenURI(

 bao.contributorNFTIds(user2)

),

"https://api.bao.fun/nft/metadata/2?contribution=800000000000000000000&proportion=5000&shares=

1000000000000000000000000000"

);

}

Recommendations:
Update refund() to decrement totalRaised:
// After summing refunds and before setting claimed

totalRaised -= contributedAmountInUsd;

7.3. Low Findings

[L-01] tokenURI shows the BERA contribution as a whole
number in _formatEther

Severity:
Low

Description:
EquityNFT::_formatEther only returns the contributed BERA as a whole number:

function _formatEther(

 uint256 weiAmount

) internal pure returns (string memory) {

 // Simple implementation - convert to ether by dividing by 10^18

 uint256 ether_value = weiAmount / 1 ether;

 return ether_value.toString();

}

This leads to misleading NFT's token URIs, where it would show lower contribution, for
example, both 1.0 and 1.9 show up as 1.0.

Recommendations:
Similar to _formatBasisPoints, make sure to atleast show 2 decimal places.

[L-02] Deprecated use of Pyth.getPrice

Severity:
Low

Description:
The BAO contract uses pythOracle.getPrice() to fetch asset prices from the Pyth
Network.

However, per Pyth’s official EVM documentation, the getPrice() function is
deprecated. Instead, the recommended approach is to use
getEmaPriceNoOlderThan() or getPriceNoOlderThan(), both of which
internally perform timestamp validation.

Additionally, the current implementation performs a manual staleness check:
require(

 (block.timestamp - uint256(price.publishTime)) <= maxPriceAgeSecs,

 "ETH price feed stale or invalid"

);

This becomes redundant when switching to get*NoOlderThan() variants.

Using deprecated API may lead to unexpected breakage in future Pyth upgrades

Recommendations:
Update all price queries to:
PythStructs.Price memory ethPrice = pythOracle.getEmaPriceNoOlderThan(

 ID,

 maxPriceAgeSecs

);

https://api-reference.pyth.network/price-feeds/evm/getPrice

[L-03] There's no way to refund an OTC contribution

Severity:
Low

Description:
The recordOtcContribution() function allows DAO managers to register off-chain
contributions (like NFTs sent manually), but these contributions are non-refundable. If a
contributor wants to reclaim their OTC asset, the current contract provides no way to
track or return those.

Recommendations:
Implement a way to allow the BAO owner to remove the OTC contribution.

	
	
	Custodia Security
	Contents
	1. Disclaimer
	2. Introduction
	3. About BAOs.fun
	4. Risk Classification
	4.1. Impact
	4.2. Likelihood
	4.3. Action required for severity levels

	5. Security Assessment Summary
	6. Executive Summary
	7. Findings
	7.1. High Findings
	[H-01] BAO owner should not be able to change the protocol admin in BAOs and EquityNFTs, the protocol admin wouldn't receive NFT royalties
	[H-02] Royalties can be drained by continously calling EquityNFT::claimRoyalties
	[H-03] refund reverts if the contributor has an OTC contirbution, as it doesn't handle address(1) token
	[H-04] totalRaised and contributions[user].amount become stale and inaccurate over time

	
	7.2. Medium Findings
	[M-01] EquityNFT doesn't support royalties in ERC20 tokens
	
	[M-02] Sending ETH to the sender may fail if the caller is a contract, because of the .transfer usage
	
	[M-03] Funds would be stuck if the BAO owner decided not to call finalizeFundraising
	[M-04] recordOtcContribution lacks max contribution validation
	[M-05] Users can’t claim their contribution NFT if they refunded earlier
	[M-06] refund is not decreasing the totalRaised amount, leading to wrong contribution proportions

	7.3. Low Findings
	[L-01] tokenURI shows the BERA contribution as a whole number in _formatEther
	[L-02] Deprecated use of Pyth.getPrice
	[L-03] There's no way to refund an OTC contribution

